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Abstract
The alpha-helix to coil transition in homogeneous polypeptides has recently
been described using a distance constraint model (DCM) that employs
network rigidity as an underlying mechanical interaction. The DCM accounts
for intramolecular hydrogen bonding, hydrogen bonding to solvent and
hydration. These interactions are parametrized to reflect the dependence on
the conformational state of the polypeptide backbone. The DCM is capable of
describing both heat and cold denaturation. As a function of temperature from
low to high, a generic re-entrant response of a homogeneous polypeptide chain
in aqueous solution is predicted to make a transition from coil (hydrated state)
to helix and then to coil (disordered state). Here we study the thermodynamic
stability of heterogeneous polypeptides that include hydrophobic (H) and polar
(P) residue types. We explore the nature of the transition by adjusting the
overall HP composition using transfer matrix methods that take into account
long-range effects due to network rigidity.

1. Introduction

The alpha-helix to coil transition in polypeptide chains is a well studied problem. Beginning
with the seminal work of Doty and Yang [1] in the 1950s, experimental studies have found
many surprises [2], and more continue to appear [3] because intrinsic complexity is being
uncovered by studying different polypeptides (both natural and synthetic) under different
kinds of solvent conditions with ever improving methodologies. Likewise, computational
techniques using molecular dynamics simulations [4–6] are providing detailed information at
the molecular level. Alternatively, coarse grain Ising-like models, such as the Zimm–Bragg [7]
and Lifson–Roig [8] models, have proved useful for understanding the essential features
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of the helix–coil transition found in polypeptides. Many embellishments have since been
considered [2, 9, 10] that take into account a variety of additional interactions. Nevertheless,
the underlying formalism is based on two kinds of parameters that reflect a nucleation process
of formation, then propagation, of helical structure.

Throughout the biochemistry literature and in standard physical-chemistry textbooks,
language adopted from early works [11] classifies parameters as either describing the nucleation
or propagation of helix. In spite of known inconsistencies [12, 13] between predictions and
experiments, and misconceptions of the meaning of the nucleation parameter [14], the Lifson–
Roig model (and its derivatives) are in widespread use—due to the combined qualitative
correctness and quantitative simplicity. Perhaps fewer surprises would appear if Ising-like
models were improved fundamentally. Therefore, we pose the question: what improvements
can be incorporated in Ising-like models to more correctly capture the essential physics?

We suggest that the answer lies in taking proper account of network rigidity, which we
formulate in terms of a distance constraint model (DCM). Upon the celebration of the 60th
birthday of Michael Thorpe, an advocate of rigidity theory and its widespread applications [15],
it is fitting to say that given the above question, it would have been difficult to find the
answer [13] in the absence of rigidity theory. Moreover, we found additional open problems
in the biochemistry literature involving the notion of free energy decomposition. In physical
chemistry it is found that additivity of free energy decomposition works well in applications to
small molecules, but in biochemistry, additivity generally fails for component entropies and free
energies [16, 17]. The common practice of assuming additivity in free energy decompositions
in coarse grain models has been identified as a problem that can lead to breaking the second
law of thermodynamics when modelling cold denaturation [18]. By invoking network rigidity
as an underlying mechanical interaction that is explicitly accounted for in the DCM, the open
problems plaguing free energy decompositions in our opinion are also resolved.

We claim that proper application of network rigidity is the answer to the above-stated
problems. The DCM employs a computationally tractable approximation scheme [19] that
restores the utility of a free energy decomposition. It has been found that the DCM describes
a large collection of experimental thermodynamic data [20–22] on polypeptides and proteins
markedly well. The DCM, however, is evolving to capture more experimental complexity,
such as differences in the basic 20 amino acids. Here, we extend prior work to heterogeneous
polypeptides. In this paper a brief review of the DCM is given with emphasis placed on
features that result from polypeptide heterogeneity. A theoretical description is presented that
involves only two kinds of residues labelled as H (hydrophobic) or P (polar). Predictions for
thermodynamic response functions such as helix content and heat capacity for different chain
lengths and compositions are given with discussions and then conclusions.

2. The distance constraint model (DCM)

Applying a free energy decomposition directly in terms of specific interaction type, denoted by
t , allows a microscopic partition function, Qt , to be defined. The corresponding microscopic
free energy is given by Gt = −RT ln Qt , where R is the universal gas constant and T is
absolute temperature. A common modelling assumption (even in the current literature) is
that the total free energy of a conformation (denoted by F) is given as G(F) = ∑

t Nt Gt ,
where Nt is the number of interactions of type t present in the system. Both Nt and Gt

depend on conformation F . The linearity assumption corresponds to independent component
parts, such that Q(F) = ∏

t QNt
t . For the solid state, such a free energy decomposition is

routinely made using a normal mode analysis, where each interaction type can be assigned
to a particular mode. This is possible because phase space volume is decomposed into
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orthogonal coordinates. More generally, linearity of free energy components is valid whenever
a decomposition reduces coupling between subsystems to a negligible level. Interaction types
identified by local conformational properties will generally strongly couple to one another
rendering a product function for Q(F) to be incorrect [23]. Consequently, total conformational
entropy is overestimated because phase space is not partitioned into disjoint parts,which results
in ‘double counting’ of regions of configuration space.

Network rigidity is explicitly calculated to obtain an approximation for Q(F). To
accomplish this task, the interactions are not only assigned a free energy, Gt , but are
also represented as a constraint on the system. Each constraint is assigned one or more
elementary distance constraint(s). The conformation of a biopolymer is then specified by
constraint topology representing a generic mechanical framework, hence the use of F to label
conformations. The coarse grain nature of the DCM expresses constraint type t in terms of
discrete states using Ising-like variables ηαt and σαt . The αt index is used to denote a particular
constraint of interaction type t . The variable η can be 1 or 0 if the constraint is present or not
respectively. The variable σ can take integer values between 0 and mt , where mt gives the
maximum number of independent distance constraints possible. The σ -variables are non-trivial
to determine for specified F , requiring application of generic rigidity calculations.

Decomposing Gt into enthalpy and entropy components and treating all elementary
distance constraints within constraint type t equivalently, yields

Gαt (F) = Htηαt − RT
St

mt
σαt . (1)

Here Ht , St respectively represent the enthalpy and maximal entropy contribution from
constraint type t . Since no pressure dependence is considered here, the enthalpy term will be
regarded as energy. The entropy contribution is divided into discrete levels of contributions,
ranging from St when the constraint is completely independent down to 0 if the constraint is
completely (all its elementary distance constraints) redundant. Choosing εt in place of Ht and
γt in place of St/mt yields a generic equation for the free energy contribution of framework
F given as

G(F) =
∑

t

εt Nt (F) − RT
∑

t

γt It (F) (2)

where Nt (F) = ∑
αt

ηαt gives the total number of constraints of type t present in the framework,
and It (F) = ∑

αt
σαt gives the corresponding total number of independent distance constraints.

G(F) is the total free energy of a conformation that accounts for degeneracy in atomic
coordinates consistent with the specified constraint topology.

From equation (2) the total energy, E(F), is given by the first sum. Additivity of energy
is valid and does not pose any problems. The second summation is over a set of independent
constraints to account for non-additivity of entropy components. Unlike a normal mode
decomposition, an independent set of constraints will not generally provide an orthogonal
basis. As a result, not all ‘double counting’ of configuration space is eliminated. Therefore,
only an upper bound estimate for total conformational entropy can be obtained, which depends
on the selected independent set of constraints, {It }. However, all independent constraint sets
provide upper bound estimates. Therefore, a preferential set of constraints, {I (p)

t } is determined
by requiring distance constraints with the lowest pure entropy components to be placed prior
to constraints having greater entropy components. This procedure is mathematically well
defined [24], yielding a lowest upper bound estimate.

Separating equation (2) into parts, it follows that

E(F) =
∑

t

εt Nt and S(F) = R
∑

t

γt I (p)
t . (3)
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The partition function is constructed over an ensemble of accessible constraint topologies given
by

Q =
∑

F
e−βG(F) =

∑

F
eτ(F)e−βE(F) (4)

where β = 1/RT and τ (F) = S(F)/R. The free volume [25] accessible to the network
of constraints is quantified by the degeneracy factor eτ . The ensemble of constraint
topologies reflect constraints breaking and forming. Physically, equation (3) expresses an
enthalpy–entropy compensation mechanism tied directly to network rigidity. Redundant
constraints stabilize rigid regions at low temperature but are destabilizing at high temperatures.
Determination of whether a constraint is redundant or independent depends on all constraints
within the framework and the long-range character of network rigidity [26, 27]. The net
effect of competing constraint topologies governs molecular cooperativity, including dramatic
topological rearrangements associated with structural changes in folding and unfolding. The
sub-ensemble of most probable constraint topologies characterize the state of a biopolymer,
and fluctuations about the equilibrium state are related to flexibility.

2.1. Free energy decomposition for polypeptide chains

Each amino acid (residue) has a hydrogen bond (H bond) acceptor atom, a donor atom, and
a side chain functional group that distinguishes it as a specific amino acid. The molecular
structure is constrained by inter-residue and intra-residue covalent bonds such that two degrees
of freedom (dof) remain along the backbone. The two dof correspond to the phi and psi bond
angles2. The angles phi and psi mostly fall into well defined Ramachandran [28] regions
corresponding to secondary structure in proteins.

We employ a free energy decomposition scheme used in prior work [20] that successfully
describes experimental data on heat and cold denaturation in polypeptides in mixed solvent
conditions [29]. The conformation of the backbone is discretized into three states: alpha-
helical, coil, or hydrated, denoted by letters a, c, and h respectively. The first two states
are invoked in the Lifson–Roig model. The hydrated state accounts for a structural cage or
clathrate of solvent molecules surrounding the residue. Clathrate formation is energetically
favourable, but decreases polypeptide entropy.

Constraint types and their parameters are defined in table 1. Covalent bonds are quenched
and have the lowest entropic weights. Therefore, covalent bond constraints are preferentially
assigned as independent before all other constraint types. Generally, fluctuating constraint
types are assigned energy and entropy parameters. However, if the constraint type is always
redundant for all network topologies, then its entropy parameter has no effect on the calculations
for conformational entropy. H bonding to unstructured solvent is modelled as such a constraint
because a decrease in polypeptide flexibility from mobile solvent is not expected. Other
interactions, such as electrostatics, side chain interactions, and self-avoidance are neglected as
is done in the Lifson–Roig model. However, unlike for all prior models, qualitative discussions
of rigidity and flexibility of polypeptides found in earlier works [7, 8, 11, 30] are replaced with
explicit calculations to obtain better estimates for the conformational entropy.

The backbone H bond parameters (Uxyz , γxyz) and U0 are considered to be independent of
residue type. All intramolecular H bond parameters used in prior works [19, 20] are employed
here. The three consecutive conformations given as {aac, aca, caa} are treated equivalently
with respect to intramolecular H bonds. Likewise {cca, cac, acc} are treated equivalently.

2 Proline is an exception that we do not consider here. Proline has one degree of freedom because a fivefold covalent
bonded ring connects the side chain back to the main chain.
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Table 1. Constraint list: covalent bonds are quenched requiring no parametrization. The third
column gives mt , the maximum number of distance constraints. For intramolecular H bonding, x ,
y, and z can be a or c conformations of three consecutive residues that the H bond spans. No loss
of generality occurs by setting Va = 0 and Uccc = 0 as arbitrary reference energies. Similarly,
γaaa ≡ 2 is an arbitrary entropy reference.

Type of interaction Energy Entropy Constraints

Covalent bonds — —
√

Coil conformation Vc δc 2
Helical conformation Va ≡ 0 δa 2
Hydration shell Vh δh 2
Intramolecular H bond Uxyz γxyz 3
Solvent H bond U0 — —

The intramolecular H bond entropy parameters are: γccc = 2.92, γcac = 2.76, γaca = 2.15,
and γaaa ≡ 2. The energy parameters are: Uccc ≡ 0, Ucac = −2.34, Uaca = −2.83, and
Uaaa = −4.64. These parameters were originally obtained by fitting DCM predictions to
simulation data [4, 5] on polyalanine chains in different environments (vacuum and water).
The H bond to solvent energy parameter, U0, was shown to be strongly dependent on the
solvent conditions. Here it is selected to be U0 = −2 kcal mol−1. The five parameters {Vc,
Vh, δc, δa , δh} need to be specified for each residue type. For H residues the parameters are:
Vc = 1.1 kcal mol−1, Vh = −2.8 kcal mol−1, δc = 3.6, δa = 2.6, and δh = 0.7. For P
residues the parameters are: Vc = 0.3 kcal mol−1, Vh = −3.4 kcal mol−1, δc = 4.0, δa = 1.8,
and δh = 0.7. These numerical values were selected to produce a working example having
qualitative features commonly observed in experiments on polypeptides in aqueous solution.
Our focus is on presenting general properties that follow from the DCM formalism.

2.2. The transfer matrix approach for heterogeneous polypeptide chains

For the free energy decomposition scheme presented in table 1 the partition function expressed
in equation (4) is calculated exactly using a transfer matrix approach. In prior works, complete
mathematical and computational details [19] and several detailed hand examples [20] can be
found. It is worth noting here that the size of the transfer matrix depends on the entropy
parameters because of the rule that assigns independent constraints preferentially with lowest
entropy weights. For the entropy parameters selected in this work, a homogeneous polypeptide
consisting of the (H, P) residue type requires a transfer matrix size of (306 × 306, 150 × 150).
The large matrix sizes compared to the 3 × 3 matrix for the Lifson–Roig model are mainly a
reflection of the long-range nature of network rigidity, and the fact that the DCM accounts for
the mechanisms responsible for both normal and inverted helix–coil transitions (not just one).

In an infinitely long random HP heterogeneous polypeptide chain with 50% H composition,
the transfer matrix size is 617 × 617. The transfer matrix is constructed as a direct product
of a rigidity state space and a conformational space [19]. The only modification required to
handle different residue types is the annotation of the conformational states {h, a, c} with a
residue index as {haa, aaa, caa}, where in this case the possible amino acids, aa, can be either H
or P. As a result of the annotation, the conformational space is enlarged, thus giving rise to a
larger transfer matrix size.

For finite chains the transfer matrix size depends on the particular composition. For
example, a HP polypeptide chain with sequence HPHHPHHHPHHHHPHHHHHP requires a
transfer matrix size of 509 × 509. In this case, the size of the transfer matrix remains the same
upon sequence inversion. However, the HP polypeptide HHHHHPPPPP requires a transfer
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Figure 1. The free energy G(F, T ) per residue as a function of temperature for an infinitely long
chain having a conformation that is 100% hydrated (h), alpha-helical (a), or a coil (c). The (left,
right) panels show results for (H, P) homogeneous chains. The region between vertical dashed
lines marks an experimentally accessible region. General equations for obtaining these lines are
given in [20].

matrix size of 395 ×395. Upon inverting this sequence to PPPPPHHHHH, the transfer matrix
size becomes 437×437. In spite of the different matrix sizes and elements, the partition function
and all thermodynamic properties are calculated to be identical. Different matrix sizes (and
elements) appear because the transfer matrix is constructed by direct propagation of rigidity
down the chain [19]. In some cases, subsets of rigidity states are not accessible traversing
from left to right as they were in traversing from right to left. Results of DCM calculations are
invariant under change of the direction of propagation as physics demands3. This is not the case
for the Zimm–Bragg and Lifson–Roig models generalized to heterogeneous polypeptides [13]
because they are based on ad hoc local nucleation parameters that do not properly take into
account long-range effects of rigidity propagation. Nucleation of helix formation in the DCM
is an outcome of the rigidity calculation—not input as a model parameter.

3. Results and discussion

3.1. H and P homogeneous polypeptide chains

DCM predictions based on our selected parameters are summarized in figure 1, showing
the free energy per residue for a homogeneous (H, P) chain in three different extreme
macrostates. The H polypeptide has features intentionally representative of alanine, which
is a hydrophobic residue with an unusually high propensity for forming an alpha-helix [31].
Over the experimentally accessible temperature range, long H polypeptides will be alpha-
helical, exhibiting no transition. Simulations on polyalanine show that the transition from
helix to coil is well above boiling (even though liquid water is non-existent at atmospheric
pressure!) In this paper, we too extend temperature ranges to understand general features. At
extremely (low, high) temperatures the hypothetical (hydrated, coil) macrostate is the most
stable.

3 Symmetry is broken by dipole interactions along the backbone, but this effect is not in the model.
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Figure 2. Results for (H, P) homogeneous chains are given in (left, right) panels. Helix content,
	helix, hydration content, 	hydr, and heat capacity, C p , are shown in the top, middle, and bottom
rows. These thermodynamic response functions are plotted for chain lengths (no of residues) 5,
10, 15, 25, 100 for the H polypeptide and 25, 30, 35, 40, 50, 75, 200 for the P polypeptide. The
orderings of the lines are such that for larger chain lengths: (i) the greater the helix content, (ii)
the greater the depletion in hydration content, and (iii) the greater the separation of the two heat
capacity peaks.

Free energy lines for long P polypeptide chains, also shown in figure 1, have similar
properties. However, the low temperature line-crossing is close to being experimentally
accessible, and the high temperature crossing is accessible. For long P polypeptides, it can
be expected that a sharp transition from helix to coil as temperature is increased will occur at
≈335 K in accordance with Schellman’s two-state model [30]. Plotting free energy lines for
limiting cases of an infinite chain provides insight into thermodynamic stability. Solvent and
pressure conditions modify y-intercepts and slopes4 that shift free energy lines and change
locations of line-crossings. If the free energy for the completely hydrated chain is greater than
the free energy for both helix and coil macrostates, then cold denaturation is not possible. This
is the case considered here for both H and P chains within the experimentally accessible range.

Key signatures in the thermodynamic response for (H, P) homogeneous polypeptides of
finite length are shown in figure 2. Over an extended temperature range both hydrophobic
and polar residues exhibit heat and cold denaturation. Helix stability has re-entrant behaviour,
where, upon cooling or heating,helix content is lost. Helix content serves as an order parameter,
but the mechanism for cold denaturation is ascribed to hydration. Therefore, hydration content
is monitored, and serves as a second order parameter. It is seen that depleting hydration content
corresponds to increasing helix content, indicating that intramolecular H bonding is more
favourable at intermediate temperatures than H bonding to solvent. In the DCM, polypeptide
H bonding to solvent is generically modelled as fluctuations in H bonding between mobile
solvent molecules and rigid clathrate structures that act like local pockets of ice.

4 The DCM does not require these lines to be straight. Temperature dependent parameters would be expected in an
accurate description of real amino acids in mixed solvents.
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Starting below the cold denaturation temperature, heating the polypeptide results in
breaking apart clathrate structures; this is akin to the process of melting ice. Hydration is
modelled here as a short-range interaction, but it breaks intramolecular backbone H bonds. As
chain length increases the helix becomes more stable as the degree of cooperativity between
backbone H bonds increases due to the long-range nature of the network rigidity. Thus, the
propensity toward hydration dramatically decreases to prevent disruption of backbone H bonds.
However, the stabilizing effect of backbone H bonds diminishes as temperature increases. Upon
further heating, gain in conformational entropy drives the rigid helical structure to break apart
into a flexible coil.

Cooperativity is best observed by tracking the transition (heat and cold) as a function
of chain length. Heat capacity curves in figure 2 show peaks separating further apart as
chain length increases, until saturation occurs. Saturation is a result of exceeding the rigidity
correlation length. The high temperature transition saturates at 512 K for the H polypeptide,
which is lower than the 587 K predicted from figure 1. Similarly, a saturation at 302 K
is found for the P polypeptide instead of 335 K. Low temperature saturation values are in
agreement with free energy line-crossing in both cases. Therefore, the high temperature
transition does not reflect a two-state process. All the heat capacity features found here,
including magnitudes and the non-two-state behaviour in the normal helix–coil transition, are
consistent with experiments.

3.2. HP heterogeneous polypeptide chains

Experimentally, polypeptides with high composition of alanine are not soluble in aqueous
solutions. Therefore, as a matter of necessity, alanine rich polypeptides having high alpha-
helix propensity must contain polar residues. Therefore it is important to investigate the
helix–coil transition as a function of H composition using the HP heterogeneous DCM. We
begin by considering a block of five residues, and all possible H–P permutations. For each
permutation, the block can be repeated an arbitrary number of times to produce chains of
length 5, 10, 15, etc. A phase diagram giving the transition temperatures (for cold and heat
denaturation) is given in figure 3 for chains having an H content of 20%, 40%, 60%, and
80%. The general feature of the phase diagram reflects how the heat capacity peaks separate
further apart as chain length increases. That is, the (low, high) temperature transition point
(decreases, increases) to some saturation temperature as chain length increases. For fixed H
composition, the curves look like a sideways parabola. Between the lines defining the parabola
is the alpha-helix phase. Above the high temperature transition line is the coil phase. Below the
low temperature transition line is the hydrated phase. No phase can be defined for extremely
short polypeptides. Actually, the phase boundaries are fuzzy, since the polypeptides represent
a small finite system (not in the thermodynamic limit).

The phase diagram shown in figure 3 shows that the experimentally accessible transition
(normal helix–coil transition) interpolates between the two limiting values of the homogeneous
H or P polypeptides. The locations of the transitions and the shape of the helix content curves are
in qualitative agreement with experiments (by construction when choosing parameter values).
At fixed H composition, the symbols used in defining the phase boundary in figure 3 show
remarkable consistency in spite of there being as many copies as there are distinct arrangements
of H and P. A natural question to ask is: how much dependence is there on the transition
temperature through sequence rearrangementat fixed H composition? This question pertaining
to the DCM predictions was originally motivated by experimental work by Baldwin and co-
workers [32] on how much sequence rearrangement affects the alpha-helix transition. They
concluded that there is a strong dependence on the order of residues in the polypeptide.
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Figure 3. A phase diagram expressing the transition temperature dependence on chain length for HP
block polypeptides with 20, 40, 60, 80% H content—shown as circles, squares, diamonds, upwards-
pointing triangles respectively. The same symbols are used independently of the arrangement of
H- and P-type residues within the chain. These data were generated by considering all possible
H–P arrangements in a five-residue block, which is then repeated to obtain all chain lengths shown
(as multiples of 5).

The distribution of transition temperatures for HP heterogeneous block polypeptides of
various lengths is shown in figure 4 for a block of five residues, and in figure 5 for a block
of 13 residues. In both cases, compositions at (or near) 60% H and 40% H (more polar) are
considered. The general trend is that the dependence on HP arrangements is greater in shorter
chains for fixed block size, and greater for larger block sizes. These results are consistent with
the idea that HP arrangements play an important role in governing the transition temperature
whenever permutations are made within the rigidity correlation length. If the correlation length
is small, HP arrangements will not be very influential. The full effects of network rigidity are
not felt in small blocks, suggesting that HP arrangements are not as effective in scrambling
up how rigidity propagates. The repeating block units do not increase the variance as much
because a regular periodicity sets in. However, as the block length increases, there are more
ways to influence how rigidity propagates. Our results show that shorter chains are more
dependent on the HP arrangement. Perhaps this is because there are fewer ways for a variety
of affects to self-average out. Although it was expected that HP arrangements would affect
the transition temperature, the results presented here show the degree to which this is true.

In figure 5, the 40% H composition for chain length of 13 shows two well separated
distributions of transition temperatures. It is surprising to see such a dramatic separation.
We therefore investigated the nature of the sequences to determine any special characteristics
responsible for such a jump. Although further investigation using statistical tools is required,
preliminary inspection shows that the sequences giving rise to low transition temperatures
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Figure 4. A histogram of transition temperatures, Tc, from ten HP block polypeptides for chain
lengths 15, 25, 40 with block size 5. The left panel shows all possible HP arrangements with 60% H
composition corresponding to three H and two P residues within the block. The right panel shows
all HP arrangements at 40% H composition.
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≈60% H composition corresponding to eight H and five P residues within the block. The right
panel shows histograms for ≈40% H composition.



The helix–coil transition in HP polypeptides studied using network rigidity S5045

have long consecutive strings of P residues near one or both ends of the polypeptide. Since
there is a clustering of Ps there is also a clustering of Hs. In all sequences, there are always
at least three consecutive Hs. The prediction that such a dramatic change can occur is quite
interesting. Future investigations along these lines appear to be warranted.

4. Conclusions

The DCM provides a framework for constructing Ising-like models based on free energy
decomposition. Although an approximation scheme,the DCM is computationally tractable and
provides a general approach not limited to the alpha-helix–coil transition, or to biopolymers.
Indeed, the approach is applicable to physical systems in general, including structural glass
networks where the ideas of rigidity applied to microscopic systems were born [33, 34].
The impetus for constructing the DCM was a desire to understand both protein stability and
flexibility self-consistently. In this context, the underlying assumption of the DCM is that the
calculated lowest upper bound estimate for conformational entropy is sufficient for accurately
describing thermodynamic stability in biopolymers. Considerable support for this approach is
mounting; it has been demonstrated that the DCM accurately models essential features of the
thermodynamic response in applications to polypeptides undergoing helix–coil transitions in
mixed solvents [20] and in proteins [21, 22].

The DCM does not suffer from drawbacks that the traditional Lifson–Roig models have,
namely modelling helix nucleation directly. Instead, the DCM models various interaction types
that interact via network rigidity, which provides a general mechanism for enthalpy–entropy
compensation. As a result, nucleation is an outcome of the network rigidity calculation.
Furthermore, the only special attribute of the alpha-helix to coil transition is that the problem
can be simplified to a point where it is solved exactly using transfer matrix methods. The
DCM transfer matrix formalism originally applied to the alpha-helix–coil transition in mixed
solvent conditions has been extended to heterogeneous polypeptides. A simple HP model
was introduced for capturing the essential nature of hydrophobic (H) and polar (P) residues.
Exact matrix calculations were performed to determine the degree to which the DCM predicts
transition temperature dependence on rearrangements of residues in a sequence. It was
found that in some cases dramatic changes result. Future work will explore better model
parametrization and, also important, investigate sequence signatures that might appear in nature
for either stabilizing or destabilizing regions causing them to become alpha-helical.
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